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PREFACE

This RAND Memorandum is devoted 4o the examination and development
of new statistical techniques for analyzing accelerated life test data.
It is a part of RAND's continuing interest irn the theoretical and
practical aspects of reliability.

This Memorandum is addressed to statisticiang, data analysts,
reliability engineers, and others ‘nterested in the analysis of
accelerated life test data.

Professor Richard E. Barlow, University of California, Berkeley,

is a consultant to The RAND Corporationm.
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SUMMARY

<

This Memorandum examines and develops new techniques for analy.ing
life test data. It obtains estimates for the life distribution in the
wse environment based on data from both the use and the accelerated
envirconments. The techniques require only physically plausib!: 1s-
sumptions, not the usual ones involving specification of a fau? v of
parametric probability distributions. Procedures are given for testing

thosc¢ essumptions that are made.



-vii-

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions «{ their
colleagues Bennett Fox and Carl Morris of The RAND Corpora: ion, an

Frank Proschan of the Boeing Scientific Research aboratories.



1, INTRODUCTION

It is common practice in certain life testing experiments to
subject test items to overstress conditfons, This may take many
different forms. For example, one might subject electronic capacitors
to a high voltage, ball bearings to a high load, or a mechanical assembly
to a strong vibration. The purpose is to shorten the time to failure.
The problem is to predict the time to failure in the norm: or use

environment on the basis of such accelerated life test data. [See

Winter, Denison, Hietala and Greene (1964) for engineering details and
bibliography.’

Let Y (X) be a random variable with distribution G (F) where Y (X)
denotes the time tc failure under normal (accelerated) conditions.

Suppose that F and G are related by a time transformation o(t), where

F(t) = GTo(t)1

so that, assuming G-1 exists,
-1
o(t) = G F(t) .

Many authors [e.g., Bessler, Chernoff, and Marshall (1962)] assume

o(t) = .t ,

i.e., o(t) 18 a scale transformation of the time axis. They also
assume that F and G belong to specified parametric families--usually
the exponential distribution. In certain cases there seems o be some
justification for assuming that the form of the acceleration function
(i.e., the time transformation) is known. Examples are:

Preceding Page Blank
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1. heaters for vacuum tubes [R. L. Guild (1952)7;
2. btall bearings [G. Lieblein and M. Zelen (1956)];

3. paper capacitors [G. J. Levenbach (1957)); and

2
B
2

4. certain transistors [G. A. Dodson and B. T. Howard (1961)].

The novelty of the problem of covrse vanishes when a(t) 1is assumed

known and the problem becomes a classical life tescing problem. In

AT

this study, we do not assume that o(t) is known--only that (t) and

R

the life distributions satiefy certain geometric restrictions which

we believe are intuitively acceptable and reasonable for many appli-
cations, However, we do assume that some sample data from items tested
in the ﬁse enviionment are available, albeit possibly scanty.

In thls paper, we develop least squares estimators fcr life dis-
tributions based on the sampling distribution assuming that the failure
rate (s increasing on the average. Given lifec test data from the ac-
celerated and unaccelerated modes, we simultaneously estimate both
distributions assuming only that the life distributions have increasing
failure rate on the average and that accelerated ftems tend to fail
sooner than unaccelerated items. Applications to fatigue data aﬁd
accelerated 1i{e tests on duplex capacitors are considered. Procedures

for testing the underlying assumptions are described.



2. A STATISTICAL MODEL FOR ACCELERATED LIFE TESTING

We assume that observations Y = (Yl’ Yz,..., Yﬁ) are available on
{tems in the unaccelerated mode having distribution G. Thesc may be
results from a truncated or censored life test. It is essential, how-
ever, that we have some failure information on life times in the un-
accelerated mode. In the accelerated mode it will normally be possible
to obtain many more observations, say X = (Xl, Xz, seey Xn) from a
distribution F also unknown, where again these may result from a
censored or truncated test. There are certain natural restrictions
which we would want to impose on the time transformation, o, relating
F and G. Since zcceleratfon reduces the time to failure, we would
expect o(t) > t. Clearly, o will also be nondecreasing. On the basis
of these properties alone we could consider the problem of obtaining
an estimate for G whict maximizes the joint likelihood and satisfies
the restrictions. This problem has been solved by Brunk, Franck,
Hanson, and Hogg (1966). However, these estimates impose no re-
strictions on the failure distributions, Utilization of additional
a priori information concerning the life distributions should result
in improved estimates.

Birnbaum, Esary, and Marshall (1966) have characterized the smallest
class of failure distributions containing the exponential distributions
which {8 closed under the formation of coherent structures. This class
is precisely the class of distributions with increasing failure -ate
average (IFRA); f.e., if the failure rate r(t) exists, then % fz r(u)du

i8 nondecreasing in t. More generally, a distribution F is IFRA if



-log[l ; F(e)] is nondecreasing in t = 0, Obviously, this includes

the class of distributions with nondecreasing failure rate aund hence

the exponential distribution.

STATEMENT OF THE PROBLEM

Given ordered observations Yl < Y2 € 4o S Ym from a distribution

G (the unaccelerated life distribution) and ordere:d observations
x1 < X2 € e S xn from a distribution F (the accelerated life dis-
tribution), we calculate the empirical distributions Gm and Fn corre-

sponding to G and F, respectively. We wish to obtain estimates &m and

F such that
n
1. G and ﬁn are IFRA;

~

2. Gm(x) < ?n(x) for all x (i.e., stochastic ordering);

[H})

3. and ?n are closest to Gm and Fn’ respectively, in a least

m
squares sense, which will be made precise in Sec. 5.
ém will then be our estimate for the life distribution in the un-
accelerated mode using data from both the accelerated and unaccelerated
environments.

Since in applications one does not always have completc life test

data, we alsc consider estimation procedures for incomplete data.
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3. LEAST SQUARES ESTIMATLS FOR IFRA DISTRIBUTIONS

Assume that each of n units is observed over some or all of its
life. Thus unit i is observed until it either fails at a random age
Ti or has attained age Li(is lost to observation), whichever occurs
first (i =1, 2, oo, n). The Li’ called limits of observation, are

constants or values of other random variables, which are assumed to be

independent of T In accelerated life testing censored and/or

i.
truncated samples are especially common, 8o that it is important to
consider such data, We now give a procedure for obtaining an estimate

of the unkuown failure distribution, F, assuming that -log F(t)/t is

nondecreasing on [0, ®) where ?(t) = 1 - F(¢t).

3.1 PROCEDURE FOR OBTAINING THE LEAST SQUARES ESTIMATES

(1) Suppose k (1 < k < n) failures are actually observed. Let
Xl < X2 € vee S Xk denote the ordered ages at failure; for convenience,
define Xo = 0. Let “j be the number of items under observation just
before Xj, 6j be the number of failures at Xj, and lj be the number of
1" " = - -
losses" in [xj-l' XJ). Then Nypp = 0y 6j Lj+1' Ordinarily, 6J

will be one, but may be more than one if the sample contains tied ob-

servations. ‘If there are no losses or ties, nj =n - jJ+1, Define

the product-limit estimate as

1, 0st<X

- i

Fn(t) = 131 (nj - GJ)/nj, Xi st< X1+1, i=1, ..., E-1 3.1)
Of, t > xE

where E = !: ig t : : N

fUndefined if k<n,

i vt e i




TSN b«

This estimate coincides with the usual empirical sampling distribution
estimate i{ there are no losses and if k = n. [See Kaplan and Meler
(1958).]

(2) We obtain a least squares estimate, ?n(t), for the failure

distribution, F, requiring the estimate tc have the IFRA property

ASEHE o

assumed for the distribution. Let ¥' 
-log F_(X,)
n i .
Xn(xi) = X for i = 1, 2, secy F
i
and define
t
A (X,)F {X
: Ly 2Ty
kn(Xi) = Max Min (3.2)
ssi t2i 2 F {X }
[EL
where
Fn{xj} = F (X)) - F (X;#) .

It is easy to verify from (3.2) that in(xi) will be nondecreasing
in i. In Sec, 5 we show that this estimate is closest to Xn(t) in a
least squares sense., Any nondecreasing function defined at order
statistics as in (3.2) is obviously a permissible estimate of X\, How-

ever, for definiteness, we define

0 , t < xl
kn(t) - xn(xi)s Xi st < xi“"l’ i = 1! sy E"l (3'3)
+ @

, t 2 XE‘

Our estimate for the distribution function will then be

“m g e
g de ey deen

e
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1 s t < Xl
Fﬂ(t) = exp;-xn(xi)c s xi st< Xi+1’ i=1, ..., E-1 (3.4)
0 R t 2 XE'

3.2 PROCEDURE FOR OBTAINING STOCHASTICALLY ORDERED ESTIMATES

Given observed failures X1 < X2 S .ee S Xk (k s n), as before,

from a sample of size n from a distribution F, and observed failures

Yl sY, S ... S Yr (r £ m) from a sample of size m from a distribution

(2]

G, we wish to simultaneously estimate F and G assuming:

1) F and G are 1IFRA;

ii) F(t) s G(t) for all t > O,

Let Fn and Gm dencte the product limit estimates for F and G as pre-
viously described (cf. Eq. (3.1)). Let X (X;) = -log Fn(xi)/x1 and

ym(Y ) = -log Gm(Yj)/Y denote estimates of X(Xi) = A and of

3 3

y(Y,) = Yj' respectively, We wish to determine the Xi and Yj which,

J

subject to the comstraints (3.6), minimize

k r
2 2

The minimization must be performed subject to the constraints

0< Xl < kz S 40 S \k’
(3.6)

0s Y S Yy S e SY

r!

and

»
I»

G (t) > F (t).




To understand the nature of the stochastic ordering restriction
it will be convenient to relabel the ¥ ,'s, Let Y., £ ... <Y <X
hi 11 ljl 1
denote the first block of Yj's--those less than Xl. The set may be
empty. Similarly let Xi_1 < Yil S ves S Yiji < Xi denote the block of

]
Yj s in the interval (xi_l, Xi).

Our problem is to minimize (3.5) subject to (3.6) and
y“i 3 xi (1 =1, 2, a6y K& This is a straight{orrward quadratic
programming problem., A RAND code (RSQPF4) 1is available for solving this
problem. In some applications we can obtain the sclution to our problem
in a manner similar to that in which we obtainad the IFRA estimate pre-
viously., To be specific, consider all pr.ssible "interlacings' of the
ws's among the Xi'su For each such linear ordering we can obtain an
explicit soluti;n to the problem of minimizing (3.5), subject to the
Jincar ordering, using Theorem 1 of Sec. 5. Now choose that solution
corresponding to a linear ordered constraint set which has minimum sum

of squares. (Unfortunately, for even moderate k and r, the number of

interlacings that must be considered will be quite large.)

3.3 APPLICATION TO FATIGUE DATA

To illustrate the ideas discussed above we consider some fatigue
data extracted from a paper by R. P. Felgar (1963), Specimens of
7075-T6 aluminum alloy were subjectad to cyclic loading under normal
air pressure and u=nder near-vacuum conditions, The data are given in
Table 1,

In this application, near-vacuum (simulating outer spa.-) con-
stlitutes the use enviromment and normal air pressute the ac..-lerated

environment. The distribution of cycles-to-failure in vacu. : is



Table 1

ALLGY FATIGUE DATA

Accelerated Environment (Air) Use Environment (Vacuum)
Specimen 105 Cycles-to-Failure § Specimen 105 Cycles-to-Failure
9
X1 1.23 Yl 3.3
X2 1.41 12 3.5
X, 1.62 Y3 14.9
.7
Xa 2.08 YA 40
X5 2.09 Y5 45,7
4
X6 2.30 Y6 46.8
X7 2.82 Y7 58.2

denoted by G, and in normal atmosphere by F.
In our example the number of observations in the use environment
and in the accelerated environment happen to be the same, Often there

will be fewer observations available in the use environment.

Using formula (3.2) to estimate *the Xn(Xi)'s and, mutatis mutandis,

the same formula to estimate the Ym(Vi)'s we obtain

AL(X,)

(X)) = .1253

}7(x2) = ,2386

§7(X3) = .3075

%7(Xa) = 4074

}7(x5) = 5994

x7(x6) = Bany
and

Y7(Yi) 0450, t =1, ..., 6,
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The estimates %7(t) and é}(t) are graphed in Figs, 1 and 2, Since
these estimates are already stochastically ordered, the accelerated
observations give us no further information concerning the distribution
G. A statistical test for IFRA, discussed in Sec. 4, does not reject
the hypothesis that G is an exponential distribution. This is also made

credible by our estimate G The accelerated data on the other hand are

7'
significantly IFRA according to the total-time-on-test statistic dis-

cussed in Sec, 4,

3.4 ACCELERATED LIFE TESTS ON DUPLEX CAPACITORS

The data in Table 2 were obtained from conducting accelerated life
tests on duplex capacitors. Acceleration is due to a voltage stress
at room temperature., The criterion for failure is the leakage current's
exceeding a certain level. The times to failure are not exact, but
approximately close to the actual failure times., To illustrate our
procedures, we consider data at only three voltage levels,

Note that the 50-volt test was censored at the ninth failure,
Using the total-time-on-trs: statistic described in Sec. 4, the 50-volt
and 70-volt data were not significantly IFRA relative to the hypothesis
of exponentiality, They appear, in fact, to follow an exponential
distribution. The 60-volt data, on the other hand, are significantly
IFRA even at the .00l significance level.

As we would expect, the data seem to be stochastically decreasing
with respect to increasing voltage. A statistical test for stochastic
ordering, given censored data and using a4 modified Wilcoxon statistic,

is disc ssed in the next section.
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Table 2 .

DUPLEX CAPACITOR ACCELERATED LIFE DATA

50 Volts (Room Temp,) 60 Volts (Room Temp.) 70 Volts (Room Temp.)
n = 13 n =13 n = 14
Times to Failure (hrs.)!Times to Failure (hrs.)|Times to Failure (hrs.)
526 56 3
1075 517 526
1075 517 526
1794 517 932
2080 517 1023
2891 517 1193
2891 517 1223
4211 : 758 2085
4211 758 2296
758 2442
758 4216
1016 4216
1186 4216
5589

The IFRA estimates of the survival probability function, using
Eq. (3.4), for the 50-, 60~, and 70-volt data are graphed in Figs. 3,

4, and 5, respectively.

bt
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4, STATISTICAL TESTS FOR IFRA (DFRA)f AND STOCHASTIC ORDERING

Before applying the techniques of this paper to life test data,
it is first necessary to check the validity of the assumptions made.
A test for IFRA (or DFRA) has been considered by Barlow (1968) and is

described below. (The asymptotic relative efficiency of this test

against various alternatives has been investigated by Bickel and

Doksum (1967).) Suppose the first r failures out of a sample of size

n are recorded, Let xl < X2 € tee S Xr denote the cbserved failure

times. Note that "withdrawals' may occur between X1 and Xl+1 and that

r is, in general, a random variable., Let n(u) be the (random) number

t
of items on test at time u. The total time on test up to the i B oxder

statistic is

X
T(x,) = | ! na(u)du,
o

r-1
The total-time-on-test statistic {s 2 T(xi)/T(xr)' Under the expo-
i=]

nential hypothesis
r-1

]
1

(r-1)
T(xi) -5 T(Xr)

Z =
T(xr) Y(r-1)/12

is approximately N(0,1l) even for relatively small r. 1If the distribu-

tion of time to failure is IFRA (DFRA) and ¥, < ¥, < ... < Y denotes

an independent ordered sample from an exponential distribution, then ;

r-1 r-1 i
I T(x) I oT)) i
1 2 (1=
T(X) st st T(Y) |

o i

TDecreasing failure rate average, Cf. Sec, 2,
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where > denotecs stochastic ordering. Hence, a natural test rejects
st
exponentiality Iin favor of IFRA if

r-1l
g T(X,)

—_— 2c
T(Xr)

a

where <, is defined by
!'il
T(Y,)
1 i

T(Yr)

P

and G(x) = 1 - e X for x > O.

Table 3 presents Z values corresponding to the failure data in

Tables 1 and 2.

Table 3
Z VALUES CALCULATED FROM THE DATA OF TABLES 1 AND 2

Data Z Values
Fatigue Data at 2.8397
air pressure (Table 1)
Fatigue Data at 0.4984
vacuum conditions
(Table 1)
Duplex capacitors at 0.7837
50 volts (Table 2)
Duplex capacitors at 3.2152
60 volts (Table 2)
Duplex cepacitors at 0.5511

70 volts (Table 2) I

The conclusions concerning the tests of exponenticlity versus
iFRA for the alloy data (Sec. 3.3) and for the capacitor data (Sec. 3,4)
were reache b+ comparing the Z values in Table 3 with percentage points

of the standard normal distribution.
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TESTS FOR S'TOCHASTIC ORDERING

Although stochastic ordering may be obvious from some accelerated
life test data, there may be instances when a statisti{cal test is
appropriéte. For example, it is not clear that there is the desired
stochastic ordering between the 60-volt duplex capacitor data and the
70-volt capacitor data.

A gencralized Wilcoxon test for comparing arbitrarily singly-
censored samples has been proposed by E, A, Gehan (1965 a,b), We

assume that m and n items are subject to life test and we observe

x{, cees X; r, censored
1
xr1+1, veey Xn n-r, failures
' ]
Yl’ cosy er T, censored
Yr +1 0 Ym m-x, failures,

2
(These observations are not necessarily ordered.)

Define

-1 if X, < '
1 YJ or Xi < Yj

! - =
U 0 1f X1 Y

13 or X; <Y, or Y'<X, or (X!, Y"), l.e., both

J 3 1 3 are censored

3

> ) (]
+1 1if xt Yj or X1 2 \J

and calculate the statistic

w=1 u

1,3

vhere the sum ‘e over all nm comparisons. To test the nypothesis

Ho X=X
st
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:‘%
1 &
- versus H. i,
Hl : X Y ; §
: st  ;
we reject Ho if <
 :%
Z = L < ¢ %
v{Var (W | P,H )} @ A
0 B
where Cy is determined using the fact that Z is asymptotically N(0,1). b 2
3
B
' o g 8 ’
v W = 3
ar (0| PH) = oS ey ) m M (M, ) + Do 01 +1)
i=1 i=1
s
+ igl my (mtn-M =L, ) (nm=3M,_ m =L, 1=1)
where
Mj = :2 L with M = 0
} ..L"l
L, = }f 2., with L =0
I °
and

L = number of uncensored observations at rank i in rank ordering

of uncensored observations with distinct values (i = 1,2, ..., s);
Qi = number of right-censored observations with values greater than

observations at rank i but less than observations at rank (i+l).

Var (W l P,HO) is the variance of W under HO and conditioned on the

pattern of observations, P.
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5, OPTIMALITY OF LEAST SQUARE IFRA ESTIMATORS

In Sec. 3 we described a method for ;stimating an IFRA distribu-
tion., Since Marshall and Pronschan (n.d.) have shown that the mi:ximum
likelihood estimate of F assuming F is JFRA is not consistent, we have
employed a leust squares criterion which is consistent. Under the IFRA
assumption A(t) = :iQBEELEl is nondecreasing., Given the observed
failure times X, s X, € .., S Xk based on a random sample from ¥ we sce'

1 2
a "good" estimate of A(t). Letting Fn denote the product-limit estimate .

(Eq. (3.1)), then

\ Xy = -log Fn(xi)
n 1 X1

provides an initial estimate of l(xi) which will enjoy all of tle
properties of the product-limit estimate; e.g., it will be strongly
consistent, It is also known that Fn is the maximum likelihood estimate
of F in the class of all distributions (see Kaplan and Mefer (1%58))

and hence Kn is the unrestricted maximum likelihood estimate for A.

Define
' t
) \n(xj>anXj}
£ (X,) = Max Min =s .
n ssi t2i t r
st Fntxj}

Clearly, in will be nondecreasing at order statistics., Furthermore, if

A is any other increasing function, then in has the property that

n n
r ’ ‘2 - > . ‘2
L§1L1n<x£) - 1) F (X 121 N - A T IXY (s |
n .
| 2
+ 1 OIS - nxp? F{x,1. g

i=1
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Hence
n N 2 E 2
121 [xn(xi) - xn(xi)] Fn[xi} < 1£1 [x(xi) - xn(xi)] Fn{xi}

and therefore in is closest to kn in the least squares sense with respect
to Fn in the class of nondecreasing functions. A proof of ineauality
(5.1) can be found in Brunk (1965) and Marshall and Proschan (1965,

Theorem 5.1). For completeness we present a proof for the discrete case,

Theorem 1: (Marshall and Proschan)

-

Let h. ({ =0, 1, ..., n) be a nondecreasing sequence, g, an ar-

bitrary sequence, m, 2 0, i = 0, 1, 2, ..., n and

i
t

"y
g, = Max Min =

ssi t2d 2
3
J=s
then
n n
n 2 2 2
P (g -mpim > L@ -hp e e 1 o(g -8
j=0 i=0 1=0

i,e., in the class of increasing functions, § = (go, cevy gn) is closest
to g = (go, esay gn) in the liast squares with respect to the measure

n
LIS

Proof:
Clearly, 31 is Increasing in i, We need only show

n

] (8 -h)(g, -8) m =0,
PR T Lt U S




Suppose g, is constant on the interval [a, bY. Then

2 (8, - h)(gy - §) m,

i=a
b-1 b
i-z-a Jza (gy - gpmy(hyy,y - hy) - jza (gy - g)m 1 by
3 i
b-1 },t B4 t L, 8
VIR E ek 7 DREN EOWESBER £o -kl zmjhb
i=a E o j=a zm ]
i=a y a c
Now
i t t
L &ymy L & L sym,
J:%- > Min J:%—-——— = Max Min 1:5——~—~ = gi.i
Z n t>1 Z m s<i t>1 Z m
j-a j J-a j j-s

Any nondecreasing function defined at order statistics as in (3.2)

is obviously permissible, However, for definiteness, we define

0, t < Xl

Al = R R, X < e <Xy,

+ >, t>X
- n

Note that this estimate will be closest to An(t) for all 0 < t < Xn

when An(xi) - An(xi). Qur estimate for the distribution function will

then be




-2

L, t <X
F (t) = exp[-xn(xi)c], X, s t<X

0, t =X,
n

The strong consistency of %n is inherited from the strong consis-
tency of Fn. By Corollary 3.3 of Prunk (1965) it follows that
lxn(xi) - A(xi)l <¢ fori=1,2, ..., n Implies lxn(xi) - A(xi)l < e
for i = 1,2, ..., n. Strong consistency follows from the strong con-

sistency of An'

The additional inequalities required by the stochastic ordering

assumption, G(x) < F(x), are immediately evident upon examining the

graphs of -log En(:) and -log fh(t).
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6, IFRA TIME TRANSFORMATIONS

r

The stochastic ordering assumption on the time transformation
a(t) = t is probably the weakest and most intuitive requirement on
a(t). By making a stronger (but more difficult to justify) assumption
on a(t) we should obtain "improved" estimates,

We adopt the following definition of an TIFRA time ttansfotmatton:f

Definition

o(t) is an IFRA time transformation if o(t)/t 18 nondecrc.ising in
t = 0and af(t) = ¢,

This definition would be perhaps quite readily acceptable 1if o(t)
depended only on the environment and not on the origiral dist: bution
G. Of course in practice this seems somewhat unlikelv, Howev.r, this
definition leads to a class of time transformations that seems in-

tuitively reasonable.

, Lemma 1,
a(t) is an IFRA time transformation if and only i¢
(1) ao(t) 1s nondecreasing in t = O;
(1) ao(t) = ¢

(i11) for every IFRA G, we have that F(t) = G[a(t) is IFRA,

Proof:
(a) Suppose o(t) is an IFRA time transfon. tion, Then
-log F(t)/t = [-log Gla(t)) fo(t) Jalt) /t] is roncucreasing in + 2 0

since o(t) 18 nondecreasing in t =2 0, I.e., F is IFRA,

fWe could alternatively consider IFR time transformations. A dis-
tribution F is IFR {f logll - F(t)] is concave on :ts support,
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(b) Suppose conditions (i)-(i1i) holq. Choose G to be the unit
exponential distribution and define F(t) = G[o(t)]. Then a(t)/t ~
" -log F(t)/t is nondecreasing in t > O since F is IFRA. I
Clearly, {f al(c) and az(t) are IFRA time transformations then so

is their composition al[az(t)].

Lemma 2
if Yl < Y2 € ves S Yn (Xl < Xz S vee S Xn) are order statistics
from G (F) and F(t) = G[a(t)], where o is an IFRA time transformation,

then
Y, -Y, > X, -X Ior 1 < }§

3t
where > means stochastically greater than. In particular, the sample

range from G is stochastically greater than the sample vrange from F.

Proof:
st

* -1 * * .
Let Yi G F(Xi) and note (Yl’ cees Yn) ("1, cees Yn). Since

1
-4

G "r(r) _ _a(t)
t

> 1 and is nondecreasing in t > 0,

t
* % ] -1
Y, - Y, G F(X,) - G F(X
J L . ( J_) ( 1) > 1’ i
xj - Xi Xj - Xi ¥

which implies the result. ||




i
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From the results of Barlow and Proschan (1966), it is easy to
verify that IFRA time transformations stoéhastically decrease order
statistics and the sample coefficient of variation. It follows that
population coefficient of variation and moments are also decreased.

Assuming that a(t)/t = G—lF(t)/t is rondecreasing in t > 0 {is
equivalent to assuming that F(t) crosses G(6t) at most once and from
below if at all for every © > 0. In this sense, F is "sharper" than G.

In analogy with the least squares estimates, we confine attention

"to estimateg of the form Gy and F& where

0 y 0 <t < Yl
~-log Gy(t) = ty(Yi), Yi <t < Yi+1
B , £> Y

and -log ?A(t) is defined similarly.
Given observations Y, <Y, < ... <V (Xl Xy S :_xn) from

a distribution G (F) we wish to estimate both F and G assuming

(1) F and G are IFRA,
(11) GCIF(t)/t is nondecreasing in t > 0

(111) ¢ F(t) > t for t > 0 .

Define y(t) = -log G(t)/t and Ym(t) = -log Em(t)/t where Gm is
the usual empirical distribution or product limit based upon observa-

tions Yl f-YZ < ees f-Yn from the normal or "use'" environment. We

consider the problem of minimizing
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o o«

[ b - v, (017 46 (0 + [ b - A (012 dF_(x) (6.1)
0 0

"

with respect to y and X subject to
0 2 v(¥y) < v(¥y) <o 2¥(Y)),
0 < MX)) 2 A(X,) 2 .un M),

-1 -1 Anla
GY Fx(t)/t is nondecreasing in t > 0, and GY Fk(t) 2t, If Gn Fn(t) is

1a

nondecreasing in t > O and 6; Fn(t) 2 t then clearly the least squares

solutions ?m and in also minimize (6.1).

To understand the restrictions on the time tranaformaticn, we
make use of the so-called Q - Q plot (Q for quantile) which is widely
used by data analysts [cf. Wilk and Gnanadesikan (1968)]. Let GY (FA)

denote estimates of G (F). A Q - Q plot based on GY and FA is merely

1

a plot of G; F,. 1f GY and F, are the empirical distribution functions,

this provides a quick, although heuristic, check on our assumptions

concerning 6" IF. Let H(x) = 1-e™® and consider the graph of H-lcY

) as illustrated i{n Figs. 6 and 7. Note that
U AR N

and 0 LF

The ﬁarametefs associated with line segments are their slopes.
The line segments, 1f extended, would pass through the origin. Fix an

ordinate value, say v. Define x(v) to be the largest value of x such

that H—IFA(x) - v and y(v) to be the largest value of y such that

H']Q{(y) < v. Letting v range over all positive values, plot rhe

JTTO PRSI
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locus of points (x(v),y(v)) in Fig. 8. Since G-lF(t)/c is nondecreasing

in t > 0, we demand the same of G;lFx(t)/t. Hence G;lFA will consist

of line segments with increasing slopes, each greater than or equal to

one., Since G;IFX cannot be flat over x-axis intervals, we must have

MX 2 Yy (6.2)

and

Yn-1"m = *n-1%n (6.3)

I1f we were to plot points Yi-lyi’ YiYi’ (1i=1,2, ..., m) and
xj_lxj, ijj’ {J =1, 2, «a., n) on the same linrc, we would sce that in-
tervals of the form (Yi-lYi’ YiYi) must fall within intervals of the form
(Aj-lxj’ ijj) ia order that G;IFA not be constant over intervals.

To minimize (6.1) subject to G, F IFRA and C-lF(t)/t nondecreasing

in t > 0 we must minimize (6.1) subject to the constraints

(1) Of_vliy2<...iy;Oixlixzi...f_xn, 1

and

(11)

Y,Y, <A, X
R P Y i

where we must consider every possible positioning sequence (jl,jz, ey jm)

in turn. Given a positioning sequence (jl'jZ' ey jm) we must also
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satisfy

o

(111) A Y, <A . {=1,2, vu., n-l.
34 1= 3n 141

A computer program is necessary to solve this problem in general. 1If

n 1s large so that we have a good estimate of F, then we may let

Xj = Aj and minimize (6.1) with respect to y subject to the restrictions

on y.
It 15 intuitively clear from Fig. 8 that if the ?i estimates are

too high the slopes Xi/?i may not satisfy our requirement xilfi - 1.

Hence the li's will tend to force our estimates of the y's down.

[ NS
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7. A MODIFIED PROBLEM

By introducing additional restrict;ons on G, the failure distribu-
tion for the use enviromment, we may obtain an explicit solutiou to
“he problem of Sec., 6. Assume
1 , t<Y
G(t) =

b exp[-vy(t - Yl)’ t = Yl

where b and v are parsmeters to be determined subject to the restriction
¢"1 < b < 1. The restriction on b insuces that G is IFRA. This is a
more stringent assumption on G than made previously. However, one can
imagine situations where it might be approximately true. Figure 7 is now
a single ray starting above Yl with slope ¥ and continuing indefinitely

to the right,

We consider the problem of minimizing

o

JRLRRACIREIRC +]; Do) -2 12 dF 0 (7.0

with respect to y and ) subject to

AL X A A A
0 <y < 11 and 1 <« 1 < 2 < 4ee € il .
- =Y -y -y = -y
M
Note that in most practical situations Y1 > Xl so that v s Y :
A 1 é

: 1
will automatically fmply 1 < vl Let 90 = YlY and Gj = ijl'

J=1,2, «eo, =1,
We now assume that we are dealing with a complete, noncensored

sample with nu tied observations and no losses. Rewriting (7.1) we

G oot o
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seek to minimize

L ? [o Y.y (Y,)]2 e 2 1
in L 1% YRY15+ ] (oJ - xlAn(xj)] L

i=1

S\.lbjﬂf:t to GO < 61 S 2ee € en~10

£quivalently, we wish to minimize

2
m

; gYm(Yl) “il 21
= |o - Y, =m——| + [, -~ X2 (X))] =5
Y2 o 1 2m =1 3 1"'n""j an

1 1

L
subject to 6, 28y <. 20 . The solution is immediate from

Theorem 1 if we make the following identification:

n
L)

(4] 1 “m

82}
n
=
’r—t

P By = Xlkm(xj) for J =1, 2, «ss, n=1

and
1 1
m & w===, M, = —> fOrJ‘l, 2, seey N
o --1»:)' J nxi
Applying the meithod of this Section to the fatigue data of Table
1 we find
Y = .0193
AT +1253
Xz = ,2386
£y = 3075
\4 = L4074
15 = ,5994

+8460

>3
>
L}
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Comparing these estima.es with those in Sec, 3.3, we note that our
estimate of the failure rate in vacuum (the use enviromment in this

case) is less, 1i..2., ; = ,0193 versus ,0450 in Sec. 3.3,

g
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